Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 172(3): 841-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25257685

RESUMO

BACKGROUND AND PURPOSE: The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. EXPERIMENTAL APPROACH: LINGO-1 homodimers were identified in both HEK293 and SH-SY5Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein-protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and AlphaScreen technology. KEY RESULTS: LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. CONCLUSIONS AND IMPLICATIONS: Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fenoxibenzamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Dimerização , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Estrutura Molecular , Peso Molecular , Proteínas do Tecido Nervoso/metabolismo , Fenoxibenzamina/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...